NON-AZIMUTHAL SOLUTIONS TO A NONLINEAR ELLIPTIC EQUATION ON A SPHERICAL CAP

Yoshitsugu Kabeya
Department of Mathematical Sciences
Osaka Prefecture University, Japan
kabeya@ms.osakafu-u.ac.jp

Abstract
This talk is based on the joint work with C. Bandle (University of Basel, Switzerland) and H. Ninomiya (Meiji University, Japan).
We consider the following nonlinear elliptic problem on a spherical cap
\[\begin{align*}
\Lambda u + \lambda (u^p - u) &= 0 \quad \text{in } \Omega_\varepsilon \subset S^n, \\
u &> 0 \quad \text{in } \Omega_\varepsilon, \\
\mathcal{B}u &= 0 \quad \text{on } \partial \Omega_\varepsilon,
\end{align*} \]
where \(\Lambda \) is the Laplace-Beltrami operator on the unit sphere \(S^n \) with \(n \geq 2 \), \(\Omega_\varepsilon \) is a spherical cap centered at the North Pole with its geodesic radius \(\pi - \varepsilon \), \(\varepsilon > 0 \) is small, \(\mathcal{B}u = \partial_n u \), or \(\mathcal{B}u = u \) with \(n \) being the outward normal differential operator to \(\partial \Omega_\varepsilon \), and \(\lambda > 0 \) is a parameter. We investigate how the bifurcations diagrams differ from that in the case \(\varepsilon = 0 \). Since we are interested in solutions which are close to 1, we consider the linearized problem around \(u \equiv 1 \):
\[\begin{align*}
\Lambda v + (p-1)\lambda v &= 0 \quad \text{in } \Omega_\varepsilon \subset S^n, \\
\mathcal{B}v &= 0 \quad \text{on } \partial \Omega_\varepsilon.
\end{align*} \]
We have the following theorem. Similar results hold for any \(n \geq 2 \).

Theorem. Suppose that \(n = 2 \) and \(\varepsilon > 0 \) is small. Let \(\mathcal{B}u = \partial_n u \). Then for each \(k \in \mathbb{N} \), around \((p-1)\lambda = k(k+1) \), there exist \((k+1) \) distinct eigenvalues \(\lambda_{k,\varepsilon,m} \) \((m = 0, 1, \ldots, k)\) to (0.2) such that
\[(p-1)\lambda_{k,\varepsilon,m} - k(k+1) \approx c_{k,m} \varepsilon^{2m}, \quad m = 1, 2, \ldots, k, \]
\[(p-1)\lambda_{k,\varepsilon,0} - k(k+1) \approx c_{k,0} (\log(\varepsilon/2))^{-1}, \quad m = 0, \]
with some positive constant \(c_{k,m} \).
Moreover, solutions to (0.1) bifurcate from \(\lambda = \lambda_{k,\varepsilon,m}/(p-1) \) and they depend on both the latitude and the longitude if \(m \geq 1 \) and depend only on the latitude if \(m = 0 \).
Remark. In the whole sphere S^2 case, the multiplicity of the eigenvalue $k(k + 1)$ is $2k + 1$. On the other hand, the multiplicity of $\lambda_{k,\varepsilon,m}$ is 2 if $m \geq 1$ and that of $\lambda_{k,\varepsilon,0}$ is 1. Thus, by the presence of $\varepsilon > 0$, the eigenvalue $k(k + 1)$ in the whole sphere case is decomposed into $(k + 1)$ eigenvalues.

If time permits, the Dirichlet case will be discussed.

This talk is based on the joint work with C. Bandle (University of Basel, Switzerland) and H. Ninomiya (Meiji University, Japan).