On semi-linear elliptic equation arising from Micro-Electromechanical Systems with contacting elastic membrane

H.Y. Chen, Y. Wang and F. Zhou

Abstract: This paper is concerned with the nonlinear elliptic problem $-\Delta u = \frac{\lambda}{(a-u)^2}$ on a bounded domain Ω of \mathbb{R}^N with Dirichlet boundary conditions. This problem arises from Micro-Electromechanical Systems devices in the case that the elastic membrane contacts the ground plate on the boundary. We analyze the properties of minimal solutions to this equation when $\lambda > 0$ and the function $a : \bar{\Omega} \to [0, 1]$ satisfying $a(x) \geq \kappa \text{dist}(x, \partial \Omega)^\gamma$ for some $\kappa > 0$ and $\gamma \in (0, 1)$. Our results show how the boundary decay of the membrane works on the solutions and pull-in voltage λ.

Hu-Yuan Chen Institute of Mathematical Sciences, New York University Shanghai, Shanghai, PR China. Email: chenhuyuan@yeah.net

Ying Wang Departamento de Ingeniería Matemática, Universidad de Chile, Santiago, Chile. Email: yingwang00@126.com

Feng Zhou Department of Mathematics, East China Normal University, Shanghai, PR China. Email: fzhou@math.ecnu.edu.cn